Surface crystallography improvements induced by evaporated Ti film on selected semiconductors – LEED and AES measurements

Jozef Ociepa, Paige Harford, Guenevere O'Hara, Bart Checinski

OCI Vacuum Microengineering, Inc., 200 Stronach Crescent, London, ON Canada

Introduction

Further improvements of electronic devices towards higher performance, efficiency, and power usage depend strongly on the intrinsic properties of the materials used for their fabrication. These desired electrical, magnetic, and optical properties are strongly impacted by material crystallography. In this poster, the components of surface crystallography play an important role as a foundation for the interface formation which is responsible for the function and performance of the specific device. The list of these devices include wide-band semiconductors such as GaN, AlN, SiC and Ga2O3.

Experiment Data

Over the course of characterization and testing with differing materials, the common result of crystallography improvement following Ti deposition was observed in select semiconductors. Crystals which experienced this improvement are:

- **AlN on Si (100)**
- **Al2O3** (0001)
- **♦** Ga2O3 (010)
- ✤ PbWO4
- ✤ LiNbO3

have been shown to improve after interactions with titanium.

Process

The sample surface is prepared using high-temperature annealing and often ion bombardment. Surface preparation is completed until the surface crystallography is repaired, resulting in a bright, sharp, and high quality LEED pattern.

Sample	Surface Preparation	Treatment After Ti Deposition
AlN on Si (100)	Annealed to 800°C	15.9nm total deposition Annealed at 550°C for 5 minutes
Al2O3 (0001)	Annealed at 693°C for 5 minutes	10Å deposition Annealed at 693°C for 5 minutes
Ga2O3 (010)	Ion bombardment for 30 minutes and annealed at 590°C for 5 minutes	50Å total deposition Annealed at 275°C for 5 minutes
PbWO4	Annealed at 693°C for 1 minute	7Å total deposition Annealed at 693°C for 1 minute
LiNbO3	Annealed at 875°C for 1 minute	60Å deposition Annealed at 875°C for 1 minute
Si (111)	Annealed at 925°C for 1 minute	Annealed at 566°C for 2 minutes between depositions
$G_{e}(111)$	Annealed at 700°C for 5 minutes	Annealed at 566°C for 5 minutes

Experimental Setup

Testing was completed in OCI's Molecular Beam Epitaxy (MBE) system (Model IMBE300). Capabilities include:

- Ti evaporation source (monitored with an incorporated quartz crystal micro-balance)
- ✤ High-temperature annealing (up to 1000°C)
- ✤ Ion bombardment (Ion Gun Model IG70)

Characterization was completed in the same system with: Low Energy Electron Diffraction (LEED) ✤ Auger Electron Spectroscopy (AES) Model BDL800IR

Remarks and Conclusions

A number of conclusions and potential explanations can be formed from the above results: * Titanium appears to perform as a "patching" with sub-monolayer film, filling surface defects of many semiconductors and improving the resulting LEED pattern

* Titanium is the only evaporated metal for which silicon and germanium are observed to retain surface reconstruction * In this case, it appears that the titanium is able to interact in a way which preserves the reconstructed lattice structure

Regardless of the mechanism of improvement, these tests have demonstrated the potential impact that Ti can have on semiconducting substrates. In future device development, an application of an ultra-thin layer of Ti may enhance performance and should be further pursued.

Implications

Semiconductor devices are often grown epitaxially, with a substrate material and film material. Often this growth process can propagate pre-existing unintentional defects and create new ones. To avoid this, we propose some semiconductors could benefit from ultra-thin layers of titanium to prevent the defects formed from poor substrate quality and lattice strain.

Contact Information

Phone: 519 457-0837 Email: jociepa@ocivm.com www.ocivm.com

